\qquad

Quiz 1

Question 1. (12 pts)

(a) (6 pts) Find equations of the line L that passes through the point $A(1,0,4,3)$ and is perpendicular to the plane $x_{1}+x_{2}+x_{3}+x_{4}=1$.

Solution: The direction of the line is

$$
(1,1,1,1)
$$

the equations of the line are

$$
\left\{\begin{array}{l}
x_{1}=t+1 \\
x_{2}=t \\
x_{3}=t+4 \\
x_{4}=t+3
\end{array}\right.
$$

(b) (6 pts) Find a unit vector that is orthogonal to both vectors $v=(1,0,2)$ and $u=(0,1,3)$.

Solution: We need a normal vector of the hyperplane.

$$
n=\left|\begin{array}{ccc}
i & j & k \\
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right|=(-2,-3,1)
$$

Now scale it to a unit vector

$$
v=\left(\frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)
$$

Question 2. (8 pts)

Find an equation of the plane H that passes through the points $A(1,0,1), B(0,2,0)$ and $C(1,2,2)$.

Solution: Consider

$$
\begin{gathered}
\overrightarrow{A B}=(-1,2,-1) \\
\overrightarrow{A C}=(0,2,1)
\end{gathered}
$$

then a norm vector of H is

$$
n=\left|\begin{array}{ccc}
i & j & k \\
-1 & 2 & -1 \\
0 & 2 & 1
\end{array}\right|=(4,1,-2)
$$

So the equation of H takes the form

$$
4 x+y-2 z=k
$$

plug in, say, $A(1,0,1)$ and we get

$$
k=2
$$

So the plane H is

$$
4 x+y-2 z=2
$$

